Dynamics and Fluctuations in Collective Motion

Hepeng Zhang

Institute of Natural Sciences and Department of Physics
Shanghai Jiao Tong University

SJTU: X. Chen, X. Yang, H. Li, C. Tai, X. Dong, D. Cai
Univ. of Texas: A. Be’er, E. L. Florin and Harry L. Swinney
Collective Motion in a Fish School
Collective Motion in a Bird Flock

Flocks of European Starlings near Oxford, Britain.
Quantify Bird Motion in Flocks

Stereo Photography:
match images from different view angles
positions of thousands of birds in a flock

Cavagna, Giardina, et al.

Statistical physics is for the birds
Physics Today (2007)
From Disorder to Order in Marching Locusts

6 minutes (accelerated 6 times) of video recording of an experiment with 120 locusts

Buhl, et al.
Science 2006
Collective Motion in Epithelial Cell

Collective cell migration is important for wound healing and cancer cell spreading.

Collective Motion of Vibrated Polar Disks

Physical interactions:
Inelastic collision leads to alignment

Collective Motion in Driven Filaments

Go With Neighbors: a “Ferromagnetic” Flock

Numerical models
Controlling parameters:
→ Strength of alignment;
→ Noise;
→ Density.

Viscek et al. PRL (1995);
Ballerini, et al. PNAS (2008);
Ginelli and Chate, PRL (2010).

Continuum theories:

\[
\rho(\vec{r},t) = \left\langle \sum_{\alpha} \delta(\vec{r} - \vec{r}_{\alpha C}(t)) \right\rangle \quad \text{concentration}
\]

\[
\tilde{P}(\vec{r},t) = \frac{1}{\rho(\vec{r},t)} \left\langle \sum_{\alpha} \hat{v}_{\alpha} \delta(\vec{r} - \vec{r}_{\alpha C}(t)) \right\rangle \quad \text{polar order}
\]

\[
Q_{ij}(\vec{r},t) = \frac{1}{\rho(\vec{r},t)} \left\langle \sum_{\alpha} \left(\hat{v}_{\alpha i} \hat{v}_{\alpha j} - \frac{1}{3} \delta_{ij} \right) \delta(\vec{r} - \vec{r}_{\alpha C}(t)) \right\rangle \quad \text{nematic order}
\]

“Ferromagnetic” Flock:
→ Off-lattice
→ Topology depends on velocities

Liquid crystal physics with active driving
Ramaswamy, Toner, Joanny, Prost, Marchetti ……
Common Features of Collective Motion

Biology:
→ Widely existing biological phenomenon;
→ Important biological functions.

Physics:
→ Large number of self-propelled objects;
→ Convert external energy into motion;
→ Local interactions;
→ Intrinsic noises cause fluctuations;
● Non-equilibrium systems;
● Statistically steady-state;

For more experiments and theories:
Hydrodynamics of a Swimming Bacterium

Reynolds number:

\[R_e = \frac{V L}{\mu} \ll 1 \]

Taylor, Lighthill, Purcell, Avron, Lauga, Pedley, Powers, Golestanian, Yeomans
A Macro-Scale Bacterium Model

Motor & gear box

Rigid helix

viscous fluid: $\mu = 10^5 \mu_{water}$
$D = 2.5 \text{ cm}; f = 0.1 \text{ Hz}$
$Re = \frac{VL}{\mu} \sim 10^{-3}$

Mechanical Wave

Fluid motion

“Bacterium” Motion
Bacteria Colonies on Agar Gel Substrates

Agar Gel Substrate

Extra-cellular matrix + bacteria

Paenibacillus dendritiformis

Agar matrix, Water, and Nutrients
Paenibacillus dendritiformis Colony Growth in 6 Days
Collectively Moving *B. subtilis* at Low Density

Track more than 95% of all bacteria in the field of view:

Vector color \rightarrow dynamic cluster

Clusters containing more than two bacteria are plotted

$|\vec{r}_{ij}| < R_d$

$\frac{\vec{v}_i \cdot \vec{v}_j}{|\vec{v}_i||\vec{v}_j|} > \cos(A_d)$

Clusters containing more than two bacteria are plotted

$N_{total} = 343$
Collective Motion at High Density

- Clusters with a range of sizes
 - Dynamic and long-lived
 - Strong velocity correlation
- No inter-cluster correlation
 - No mean flow
 - No long-range order

Qualitatively similar to numerical simulations:
Hernandez-Ortiz et al. 2005
Saintillan & Shelley 2007
Ishikawa & Pedley 2008

Global Analysis:
Zhang et al. PNAS (2010)
Size Distributions of Bacterial Clusters

Similar distributions found in fish schools & herds:

Bonabeau et al. 1999
Couzin and Krause 2003
Peruani et al. 2012

\[P(n) = An^{-b}e^{-n/n_c} \]
\[A = 0.5 \]
\[b = 1.85 \]
\[n_c = 6.5 \text{ for } N_{\text{total}} = 343 \]
\[n_c = 75 \text{ for } N_{\text{total}} = 718 \]
Bacteria in Large Clusters Move Faster

\[N_{\text{total}} = 343 \quad N_{\text{total}} = 539 \quad N_{\text{total}} = 718 \]

Mean Speed (\(\mu m/s \))

\[P(v_X) \]

Increasing size
Large Density Fluctuations

Mean:
\[N(L = 90 \, \mu m) = 718 \]

Standard deviation:
\[\Delta N(L = 90 \, \mu m) = 70 \]

How does \(\Delta N(L) \) Scale with \(N(L) \) ?
Anomalous Scaling in Density Fluctuations

Thermally equilibrated systems:

\[\Delta N \propto N^{0.5} \]

Our system:

\[\Delta N \propto N^{0.75} \]

→ Non-equilibrium systems are different.

→ Originated from active motion:

Exponent 0.8 in polar systems: observed in numerical model by Chate et al 2008; in granular system by Deseigne et al 2010;

Exponent 1 in apolar systems: predicted by Ramaswamy, Simha, and Toner 2003; observed in granular system Narayan et al 2008.
Instantaneous Configurations of Clusters

Mean velocity
\[\vec{V}_I = \langle \vec{v}_{i,I} \rangle_i \]
Mean speed
\[S_I = \langle |\vec{v}_{i,I}| \rangle_i \]
Polarization
\[\vec{P}_I = \left\langle \frac{\vec{v}_{i,I}}{|\vec{v}_{i,I}|} \right\rangle_i \]
Mean orientation
\[\vec{\Theta}_I = \left\langle \vec{\theta}_{i,I} \right\rangle_i \]

Chen, Dong, Be'er, Swinney, and Zhang, PRL, 2012
Correlation Length and Clusters Size

Correlation function:

\[C^u(r) = \frac{1}{C^u_0} \sum_{ij} (\hat{u}_{i,I} \cdot \hat{u}_{j,I}) \delta(r - |\vec{r}_{i,I} - \vec{r}_{j,I}|) \]

Correlation length:

\[C(r = \xi) = 0 \]

Spatial size of a cluster: \textit{maximum} distance between two bacteria
Correlation Length Scales with Cluster Size

Color: 6 global densities;
Symbols: 4 correlation functions:

\[\xi = 0.3L \]
Scale-invariant Correlations

Rescale x axis

Line: stretched exponential fit
Scale-invariant Correlations May be Universal

Cavagna et al: experimental results from bird flocks (PNAS 2010, 2012)

Birds are different from bacteria:
→ Six orders of magnitude larger;
→ More complicated biological function;
→ Motion in 3D;
→ Flocks are more long-lived.
Correlation and Response Near Criticality: Ising Model on a 2D Square Lattice

Hamiltonian:
\[H = -\frac{1}{2} \sum_{ij} J_{ij} s_i s_j \]

Critical temperature:
\[T_c = \frac{2}{\ln(1+\sqrt{2})} \frac{J}{k_b} \]

Correlation length:
\[\xi \sim \left| \frac{T-T_c}{T_c} \right|^{-1} \]

Susceptibility:
\[\chi \sim \left| \frac{T-T_c}{T_c} \right|^{-7/4} \]

Kenneth Wilson
Problems in physics with many scales of length

Self-similarity ➔
Renormalization group theory
Go With Neighbors: a “Ferromagnetic” Flock

Update position:

\[r_i^{t+\Delta t} = r_i^t + v_0 \Delta t v_i^{t+\Delta t} \]

Update velocity:

\[v_i^{t+\Delta t} = \Theta \circ \left[\alpha \sum_{k \in N_i} v_k^t + \beta \sum_{k \in N_i} f_{ik} e_{ik}^t + \gamma n_i \right] \]

Fixed parameters:

→ Number of neighbors = 20;
→ Number of birds 500-500000;
→ Vector noise;
→ Random initial condition;
→ Open boundaries;
→ \(\beta = 1 \);

Polarization Phase Diagram

Number of birds 500

Ordered

Dis-ordered

\[\log_2 (\alpha/0.001) \]

\[\log_2 (\gamma/0.001) \]
Typical Evolution of the Model

Alignment strength:
\[\alpha = 0.001 \times 2^{10} \]

Noise strength:
\[\gamma = 0.001 \times 2^{6} \]

Final state:
ordered state with fluctuations
Typical Evolution of the Fluctuations

Alignment strength:
\[\alpha = 0.001 \times 2^{10} \]

Noise strength:
\[\gamma = 0.001 \times 2^6 \]

Arrows:
Velocity fluctuations X 30
Correlation Length Scales with Cluster Size
Scale-invariant Correlations

Correlation Function vs Normalized Separation
Spatial Correlation of Fluctuations

Long-ranged correlation in all ordered states.
Concluding Remarks

Collective motion is a widely observed phenomenon:
- wide range of system sizes;
- short range interactions without central control;
- intrinsic noises cause fluctuations;
- novel statistical system far from thermal equilibrium:
 \[P(n) = A n^{-b} e^{-n/n_c} \quad \Delta N \propto N^{0.75} \]

Scale-invariant correlations of fluctuations:
- experimental and numerical studies lead to qualitatively similar results over a wide range of parameters;
- correlation lengths proportional to cluster sizes
 \[\xi = sL; \quad s \in [0.3, 0.4] \]
- correlation functions collapse after rescaling;

Origin: spatial self-similarity;
Function: poised at criticality to achieve sensitive response.