Improving Science Education

Michael F. Schatz Georgia Tech

Traditional Lecture

How effective is it?

A renown teacher (and Nobel-prize winner) explained in lecture that the sound from a violin is produced (mostly) by the wood in the back.

15 minutes later (same lecture period), he asked the following question:

The sound you hear from a violin is produced . . .

a. mostly by stringsb. mostly by wood in backc. both equallyd. none of above.

Question: (for you)

What percentage of the class answered the question correctly?

Wieman & Perkins, Phys. Today (2005)

Eliminate traditional lectures/courses?

MOOCs (Massively Online Open Courses)

- + Online videos
- + Virtual discussion forums
- + Free
- + "Certificate" instead of credit

CS221: Intro. to Artificial Intelligence Sebastian Thrun: Stanford/Google

- CS221: Intro. to Artificial Intelligence Sebastian Thrun: Stanford/Google
- + Enrollment: 160,000 students

- CS221: Intro. to Artificial Intelligence Sebastian Thrun: Stanford/Google
- + Enrollment: 160,000 students (100,000 from outside U.S.)
- + Dozens of flawless performers

- CS221: Intro. to Artificial Intelligence Sebastian Thrun: Stanford/Google
- + Enrollment: 160,000 students (100,000 from outside U.S.)
- + Dozens of flawless performers(None from Stanford)

Eliminate Traditional Universities?

MOOC Providers

- + Udacity
- + Coursera
- + edX

Improving Science Education

Challenges of Traditional Lectures

+ Limited Short-term Working Memory

+ Passive Learning

Interactive Engagement Techniques

Peer Instruction (Eric Mazur, Harvard)

- + Reduce cognitive load
- + Stimulate student thinking

Peer Instruction Example Step 1: Mini-Lecture (~10 minutes)

Buoyancy: Archimedes' Principle The buoyancy force is equal to the weight of the displaced fluid.

Peer Instruction Example Step 2: Pose Concept Question

Boulder in a Boat: A boat with a big rock floats on a lake. The rock is dropped into the lake and the water level in the lake:

- 1. Rises.
- 2. Falls.
- 3. Remains the same.

Peer Instruction Example Step 3: Each student selects, writes down answer (~1 minute)

No talking

Peer Instruction Example Step 4: Peer Instruction (~2 minutes)

Turn to a neighbor and compare answers; if you differ, convince your neighbor that you are correct.

Peer Instruction Example

Step 5: Vote

Initial Response

Final Response

Peer Instruction Example Step 5: Recap

Student difficulties? Revisit topic.

Mostly correct? Go to next topic

Measurement

R. Hake, Am. J. Phys. (1998)

Improving Science Education

Foundation for Standards (from US National Academy of Sciences)

THE NATIONAL ACADEMIES PRESS

A FRAMEWORK FOR K-12 SCIENCE EDUCATION

Practices, Crosscutting Concepts, and Core Ideas

2012

Three Dimensions of Modern Science Education

+ Disciplinary core ideas

+ Crosscutting concepts

+ Scientific and engineering practices

Scientific and Engineering Practices

- 1. Asking questions and *defining problems*
- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data

- 5. Using mathematics and *computational thinking*
- 6. Developing explanations and *designing solutions*
- 7. Engaging in argument from evidence
- 8. Obtaining, *evaluating*, and communicating information

Predicting Motion: Traditional Approach

A bullet has a speed of 350 m/sec as it leaves a rifle. If it is fired horizontally from a cliff 6.4 m above a lake, how far does the bullet travel before striking the water?

<u>Solution:</u> A 2-dimensional problem with constant acceleration due to gravity (<u>Projectile motion</u>). The origin is placed at the bullet's location at time t=0. Hence the initial conditions for the problem are:

$$\begin{aligned} x(t=0) &= x_o = 0 ; \quad y(t=0) = y_o = 0 \\ v_x(t=0) &= v_{ox} = 350 \text{ m/s}; \quad v_y(t=0) = v_{oy} = 0 \end{aligned}$$

For constant gravitational acceleration (downward = + y direction), we have: $a_x = 0$; $a_y = + g = +9.8 \text{ m/sec}^2$.

The general solutions for the constant acceleration problem in two dimensions are:

$$\begin{aligned} \mathbf{x}(t) &= (1/2) \mathbf{a}_{x} t^{2} + \mathbf{v}_{ox} t + \mathbf{x}_{o} & \mathbf{y}(t) = (1/2) \mathbf{a}_{y} t^{2} + \mathbf{v}_{oy} t + \mathbf{y}_{o} \\ \mathbf{v}_{x}(t) &= \mathbf{a}_{x} t + \mathbf{v}_{ox} & \mathbf{v}_{y}(t) = \mathbf{a}_{y} t + \mathbf{v}_{oy} \\ \mathbf{x}_{y}(t) &= \mathbf{x}_{y} t + \mathbf{x}_{oy} \\ \mathbf{x}_{y}(t) \\ \mathbf{x}_{y}(t) &= \mathbf{x}_{y} t + \mathbf{x}_{oy} \\ \mathbf{x}_{y}(t) \\ \mathbf{x}_{y}(t) &= \mathbf{x}_{y} t + \mathbf{x}_{oy} \\ \mathbf{x}_{y}(t) \\ \mathbf{x}_{y$$

Inserting the values of acceleration and the initial conditions gives us the specific equations.

x(t) = (350) t
$$y(t) = (1/2)(9.8) t$$

 $v_x = 350 \text{ m/s}$ $v_y(t) = 9.8 t$

Let t' be the time when the bullet hits the lake. We then know that: y(t') = +6.4 m. Thus:

$$y(t') = +6.4 = +4.9 t'^2 \rightarrow t' = 1.143 sec$$

The horizontal (x) position of the bullet at this time is then: x(t) = (350)(1.143) = 400 m.

Predicting Motion: Alternative Approach

Model: Newton's Laws of Motion

Initial Conditions: $\mathbf{t}_{o}, \mathbf{x}_{o}, \mathbf{v}_{o}$ Physical Properties: mass, M Total Interactions: \mathbf{F}_{net}

Predict motion a short time later (Δt) $\mathbf{v_f} = \mathbf{v_0} + (\mathbf{F_{net}} / \mathbf{M}) \Delta t$ $\mathbf{x_f} = \mathbf{x_0} + (\mathbf{F_{net}} / \mathbf{M}) \Delta t$

Long time motion prediction: Iterate

Motion Prediction with a Computer

```
# Set up graph and onscreen curve
graph = PhysGraph()
trail = curve(color = color.yellow, radius = 1)
trail = curve(color = curve(color = color.yellow, radius = 1)
trail = curve(color = cur
```

labelMarkerOffset=vector(0,-20,0), #put lables below the marker dronTime=True_timeOffset=vector(0,35,0)) # nut times above the marker

Ball physics update
ball.velocity = ball.velocity + ball.netForce/ball.mass*time.deltaT
ball.pos = ball.pos + ball.velocity*time.deltaT

61 62 # Ball physics update 63 ball.velocity = ball.velocity + ball.netForce/ball.mass*time.deltaT 64 ball.pos = ball.pos + ball.velocity*time.deltaT 65 66 # Update motion map, graph plot, onscreen trail 67 motionMap.update(time.start)

49

50

Integrating Computational Thinking

- + Model-building skills
- + Accessibility
 - * Pre-college and introductory students
 - * More problems (Angry Birds \rightarrow Piglantis)

+ Provides new representations, visualizations

Summary

Try a Hands-on Approach to Teaching, too!

* Project-Based Learning (Murphy, Goldman)

* Integrated Science (Schoetz)

* Afternoon Sessions: Peer Instruction (Session JJ), Lecture Demonstrations (Session HH), Computational Thinking (Session GG)

.

References

* MOOCs:

http://www.nytimes.com/2012/03/05/education/moocs-largecourses-open-to-all-topple-campus-walls.html?pagewanted=all

* Peer Instruction: http://mazur.harvard.edu/research/detailspage.php?rowid=8

* New Science Standards http://www.nap.edu/catalog.php?record_id=13165

* Computational Thinking: <u>http://www.physics.gatech.edu/content/physics-education</u>, <u>http://vpython.org/</u>

Acknowledgements

Georgia Tech PhysicsGeorgia Tech PsychologyEd Greco, Scott Douglas, Erin ScanlonRichard CatramboneFaculty and Grad. Student ColleaguesM. Jackson Marr

Colorado

Danny Caballero

NC State Ruth Chabay Bruce Sherwood

Purdue Mark Haugan

Supported by NSF DUE-0942076, NSF DUE-0618519, Georgia Partnership for Reform in Science and Mathematics (PRISM)