Theory of nonlinear creep under large deformation in polymer glasses

Kang Chen and Kenneth S. Schweizer

1Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University
2Department of Materials Science & Engineering, University of Illinois at Urbana-Champaign

Goal

- Creep is defined by the time dependence of strain at constant stress

- At low stress, the typical ideal creep curve grows monotonically and gradually, bending down approaching the steady flow state (constant strain rate) after an instantaneous jump

- But, at large stress and/or deformation, a dramatic upturn occurs, and followed by a bending-over at very large strain
 - What’s the origin of the upturn and bending-over?
 - What causes the dynamics change during these processes?
 - How to model the creep response?

Microscopic theory of glassy dynamics

- Dynamical “free energy” for single-segment movement:

\[
\dot{\gamma} = -\frac{\partial}{\partial r} F_{eff}(r(t)) + \eta(t)
\]

- Strain hardening at large deformation

State variable under Gaussian thread model

\[\dot{S}_0 = S(q = 0)\]

Mechanical and Dynamical properties:

Elastic modulus: \(E'\)

Alpha relaxation time:

\[\tau_a(T) = \tau_0(T)e^{\alpha_\tau/S_k T}\]

Model of aging and rejuvenation

\[
\frac{dS}{dt} = S_0 - S_0 \tau_a(S_0 - S_0) - \frac{\tau}{E(S_0, \tau)\tau_e(S_0, \tau)}\]

Constitutive equation of nonlinear mechanical response

- Generalized Maxwell Model:

\[\dot{\gamma} = \frac{d\tau}{dt} E'(\tau) + \frac{\tau}{E'(\tau)\tau_a(\tau)}\]

- Nonexponential decay:

\[
\tau(t) = \int_0^t d\tau'E'(\tau(t))e^{-\int_0^{\tau(t)} E'(\tau)^{\beta_k} \dot{\gamma}(\tau')d\tau'}
\]

\(\beta_k\) : related to heterogeneity

Results: Creep at large stress

- Strain hardening at large deformation

State variable decreases for stretched chain

\[\lambda = e^{\alpha_\tau/S_k T}\]

Conclusion

- The upturn behavior is caused by rejuvenation process.
- The bending-over happening at very large deformation is due to strain hardening.
- Strain response and relaxation time are well predicted except for the recovery process because of the lack of relaxation mechanism of stretched chain in the theory.