Monte Carlo simulation on magnetization plateau induced by magnetic field

Xiaoyan Yao

Department of Physics, Southeast University, Nanjing, China

Triangular antiferromagnetic system: \(\text{Ca}_3\text{Co}_2\text{O}_6 \)

Experiment

Structure character: parallel magnetic chains align along the hexagonal c axis, forming a two-dimensional triangular lattice in the ab plane. The intrachain coupling along c axis is ferromagnetic and the interchain coupling is antiferromagnetic and much weaker.

The steplike magnetization \(M \) plotted against magnetic field \(H \) at low temperature \(T \). As \(T \) falls down into between 10K and 25K, \(M \) presents an \(M_{\text{sat}}/3 \) plateau where \(M_{\text{sat}} \) is the saturated \(M \). As \(T < 10 \text{ K} \), the \(M_{\text{sat}}/3 \) plateau decomposes into three nonzero and equidistant substeps.

Simulation

Our simulation results show the different steplike behaviors in different temperature ranges, consistent with experimental observations. The \(M_{\text{sat}}/3 \) plateau at about 10K corresponds to a homogeneous ferrimagnetic ordering. The multiple steps below 10K originate from the inhomogeneous metastable states.

Monoclinic system: \(\text{CoV}_2\text{O}_6 \)

Experiment

The monoclinic \(\text{CoV}_2\text{O}_6 \) also shows an \(M_{\text{sat}}/3 \) plateau, but the critical magnetic field for the second jump is about 2 times as large as that for the first one.

Simulation

The distorted antiferromagnetic triangular model with anisotropic exchange interactions can well reproduce this stepwise behavior. The \(M_{\text{sat}}/3 \) plateau originates from the same ferrimagnetic state observed in the regular triangular system, but the critical fields show different features due to the frustration relaxed by anisotropy.