Monte Carlo simulation on magnetization plateau induced by magnetic field

Xiaoyan Yao

Department of Physics, Southeast University, Nanjing, China

■ Triangular antiferromagnetic system: Ca₃Co₂O₆

Experiment

Taken from V. Hardy et al. (2003)

Structure character: parallel magnetic chains align along the hexagonal c axis, forming a two-dimensional triangular lattice in the ab plane. The intrachain coupling along c axis is ferromagnetic and the interchain coupling is antiferromagnetic and much weaker.

Taken from H. Kageyama et al. (1997)

The steplike magnetization M plotted against magnetic field H at low temperature T. As T falls down into between 10K and 25K, M presents an $M_{sat}/3$ plateau where M_{sat} is the saturated M. As T<10 K, the $M_{sat}/3$ plateau decomposes into three nonzero and equidistant substeps.

Simulation

Our simulation results show the different steplike behaviors in different temperature ranges, consistent with experimental observations. The $M_{sal}/3$ plateau at about 10K corresponds to a homogeneous ferrimagnetic ordering. The multiple steps below 10K originate from the inhomogeneous metastable states.

Partial spin snapshots of the triangular lattice for (a) on the $M_{\rm sa}/3$ plateau at T=10 K. (b-d) on the three substeps at 2K.

■ Monoclinic system: CoV₂O₆

Experiment

The monoclinic CoV_2O_6 also shows an $M_{\text{sat}}/3$ plateau, but the critical magnetic field for the second jump is about 2 times as large as that for the first one.

Simulation

The distorted antiferromagnetic triangular model with anisotropic exchange interactions can well reproduce this stepwise behavior. The $M_{\rm sa}/3$ plateau originates from the same ferrimagnetic state observed in the regular triangular system, but the critical fields show different features due to the frustration relaxed by anisotropy.