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Theme 

•  Coupled Oscillators provide a useful paradigm for the  
  study of collective behavior of large complex systems 

•  A wonderful world to be in – full of interesting  
  mathematical challenges and novel applications –  
  physics, chemistry, biology, economics….. 

•  Still a very active area of research 

•  Lends itself easily to `hands-on style’ experiments!   



Coupled Oscillators in the Natural World 

•  Walking, clapping, running….. 
•  Pacemaker cells in the heart 
•  Insulin secreting cells in the pancreas 
•  Neural networks in the brain and spinal cord 
    -- control rythmic behaviour like breathing … 
•  Groups of crickets, frogs in monsoon, 
•  Swarms of Fireflies                     

A common and striking occurrence is   
the emergence of a single rhythm –  

“synchrony” 



QUESTIONS? 

•  How do coupled oscillators synchronize? 

•  Can one construct simple mathematical models to 
   understand this phenomenon? 

~ 1650 

Huygens 

Observations and conjectures regarding 
Pendulum clocks 



Charles S. Peskin Arthur T. Winfree 

Mathematical Biologists 

Pioneering work around 1970s 



•  Charles S. Peskin (N.Y.U.) – circa 1975 

•  electrical circuit model for pacemaker cells 
•  capacitor in parallel with a resistor - constant input 
   current - mimics firing of a pacemaker cell 
•  considered an array of identical oscillators - globally 
  coupled (pulse coupling) 

                 TWO CONJECTURES 

•  System would always eventually synchronize 

•  It would synchronize even if the oscillators are not 
   quite identical 



•  PESKIN PROVED HIS FIRST CONJECTURE FOR 2 OSCILLATORS 
   (ALSO FOUND AN OUT OF PHASE EQUILIBRIUM) 

•  GENERAL PROOF FOR ARBITRARY NUMBER OF OSCILLATORS 
   WAS OBTAINED 15 YRS LATER  (STROGATZ & MIROLLO) 

•  ARTHUR T. WINFREE (1966) - graduate student at Princeton 

•   MAJOR BREAKTHROUGH 
•   CONSIDERED SYSTEM OF COUPLED LIMIT CYCLE  
   OSCILLATORS 
•  WEAK COUPLING APPROXIMATION 
•   CONSIDERED ONLY PHASE VARIATIONS 
•   GLOBAL COUPLING 

• Y. Kuramoto – developed the model further and made extensive use 
                        of it. 



LIMIT CYCLE OSCILLATOR 

X′′ + a (X2 - 1)X’ + X = 0,  a > 0 

“Isolated closed curve in phase space” 



Van der Pol Oscillator 



Belousov Zhabotinsky Reaction 

Citric acid and bromate ions in a solution of sulfuric acid, and 
in the presence of a cerium catalyst.  

X 

Y 
a=10, b=2 



A SINGLE HOPF BIFURCATION OSCILLATOR 

Z⁄(t) = (a + iω - | Z(t) |2 )Z(t) 

where Z = X + iY = r exp(iθ) 

r/  = r (a - r2) 
θ/ = ω Origin (r=0) stable for a ≤ 0 

for a > 0 limit cycle osc. 

a 

y 

x 

⁄  → d/dt 

δr⁄ = a δr 

Stewart – Landau Oscillator 



Two Coupled Limit cycle Oscillators 

K = coupling constant; a=1 



In polar coordinates 

Weak coupling approximation: separation of time scales – 
 short time – relaxation to limit cycle –  
long time phases interact  - - let r1 ≈ r2 ≈ constant 



Force tries to reduce phase difference 

EQUILIBRIA 

ϕ = 0  ⇒ θ1 =  θ2  symmetric state 

ϕ = π  ⇒ θ1 =  θ2  + π  anti -symmetric state 

PHASE LOCKING -  “synchrony” is only a part of the 
story  -  “symmetry breaking” - general scenario 

Identical oscillators : 

define 



In Phase 

PHASE EQUILIBRIA and ANIMAL GAITS 





4 OSCILLATORS 

θ1 =  θ2 ;  θ3  =  θ4 ;  θ1 =  θ3  +  π -- rabbit, camel, horse 

θ2 =  θ1 + π /4 ;  θ3  = θ2 + π /4 ; θ4  = θ3 + π /4 ;  -elephant 

θ1 =  θ2  = θ3  =  θ4        -- GAZELLE 



HORSE GAITS 



Three Oscillators 

θ1 =  θ2 =  θ3 

θ1 =  θ2 + π/3 ; θ2 =  θ3 + π/3 ;  

θ1 =  θ2  ; θ3  no relation - same frequency 

θ1 =  θ2 + π  ; θ3  has twice the frequency 



Two out of synchrony and one twice as fast 



•  6 OSCILLATORS -- INSECTS,  
  COCKROACHES ETC. 

•  CENTIPEDE! – traveling wave 

Courtesy: Dan Goldman 




QUESTION: Coupled osc. Equilibria and Animal gaits - is this 
 a mere coincidence or is there a deeper connection? 

•  Active area of research 

•  Central pattern generators (brain and spine) 

•  Group theoretic methods coupled with generalized 
   Hopf bifurcations 

•  Clinical experiments 



2 NON-IDENTICAL OSCILLATORS 

where 

PHASE LOCKING ONLY IF Δ ≤ 2K  

Then 

FREQUENCY ENTRAINMENT 

Common frequency 



Two Phase Coupled Oscillators 



N coupled (phase only ) oscillators 

Frequencies given by a unimodal distribution function 

      “global coupling” - mean field approximation 

Complex order parameter: 

- measure of phase coherence 

- average phase 



r =1 – synchrony 

r = 0 – phase drift 

Kuramoto solved the equation exactly for r = constant and obtained 
the threshold condition for synchrony K ≥ Kc   



for 

“Second order phase transition” 

Near onset  Supercritical bifurcation 

for 
(Strogatz and Mirollo, J. Stat. Phys. 63 (1991) 613) 



Synchronization in Fire Flies 




Synchronization in fireflies 

• S. Strogatz  -  “From Kuramoto to  

• Crawford:exploring the onset of  

synchronization in populations of  

coupled oscillators”’ 

 Physica D 143 (2000) 1-20. 



Strong Coupling Limit: Amplitude effects 

is an equilibrium solution 

Stability of the origin? 

Origin stable if 



Marginal Stability Curve 

Substitute in characteristic equation and 

solve it for  

This yields 

And the conditions: 



Two Amplitude Coupled Oscillators 



Physical picture of amplitude death 
(strong coupling limit) 

Each oscillator pulls the other off its limit cycle and they both 
collapse into the origin r = 0 --AMPLITUDE DEATH 

Happens for K large and Δ large  

Two oscillators 



EXAMPLES OF AMPLITUDE DEATH 

•  CHEMICAL OSCILLATIONS - BZ REACTIONS 
   (coupled stirred tank reactors - Bar Eli effect) 

•  POPULATION DYNAMICS 
   Two sites with same predator prey mechanism can have 
   oscillatory behaviour. If  species from one site can move 
   to another at appropriate rate (appropriate coupling 
   strength) the two sites may become stable (stop oscillating) 

•   ORGAN PIPES 



Matthews and Strogatz, PRL 1990 

R is the order parameter 



Large Number of Amplitude Coupled Oscillators 



So far we have looked at  systems with “global” coupling  
                        – mean field coupling 

What about other forms of coupling?   

Short range interactions (nearest neighbour)?  

Non-local coupling? 

Time delayed coupling 



EXTENSION TO SYSTEMS WITH SHORT RANGE INTERACTIONS 

•  Nearest neighbour coupling 

•  Limit of very large N – chain of identical oscillators 

In the continuum limit 

Complex Ginzburg Landau Eqn 

Let a → 0 ; ja → x 



Non-local coupling 

Continuum limit : 

Non-local CGLE 



Weak coupling limit 

Ignore amplitude variations 

``Ring of identical phase oscillators with non-local coupling’’ 

Kuramoto and Battogtokh,  
Nonlin. Phen. Complex Syst, 5 (2002) 380  

Compare with 



“Novel” collective state 

Simultaneous existence of coherent and incoherent 
states 

“Chimera” state 



ϕ 

xj 

Chimera 




Understanding the Chimera state 

Define a rotating frame with frequency Ω 

Relative phase in that frame 

Complex order parameter 

Look for stationary solutions in which R and Θ are space dependent 

Oscillators with  Fixed pt. θ*  



Time delayed coupling? 

Time delay is ubiquitous in real systems due to finite  
propagation speed of signals, finite reaction times of  
Chemical reactions, finite response time of synapses etc. 

WHAT HAPPENS TO THE COLLECTIVE  
DYNAMICS OF COUPLED SYSTEMS IN THE  
PRESENCE OF TIME DELAY? 



SIMPLE TIME DELAYED MODEL 

(Reddy, Sen and Johnston, Phys. Rev. Letts. 80 (1998) 5109; 
  Physica D 129 (1999) 15 ) 



Weak coupling limit 

Phase locked solution: 

•  Multiple frequency states 
•  Frequency suppression 



Early work by Schuster et al 

•  Multiple Frequencies:  
                       H.G. Schuster and P. Wagner,  
                       Prog. Theor. Phys. 81 (1989) 939  

•  Frequency suppression 

Niebuhr, Schuster & Kammen, 
Phys.Rev.Lett. 67 (1991) 2753 

Kuramoto model 



Strong Coupling Limit: 

Linear stability analysis of the origin Z=0 

Eigenvalue equation: 

For τ = 0 detailed analysis by  
D.G. Aronson, G.B. Ermentrout and  
N. Kopell, Physics 41 D (1990) 403 

Amplitude Death 





Two Coupled Oscillators with Delay 

(no delay) 

Identical Oscillators 
can DIE! 

(Reddy, Sen and Johnston, Phys. Rev. Letts. 80 (1998) 5109; 
  Physica D 129 (1999) 15 ) 



Geometric Interpretation of delay induced death in identical oscillators 

The current state P(t) is pulled towards the retarded state Q(t-τ) of 
the other oscillator and vice-versa. For appropriate values of K 
and time delay both oscillations will spiral inwards and die out. 



•  Existence of death islands in K - τ space 

Size, shape vary with N and ω 



•  Existence of multiple death islands 



•  Existence of higher frequency states and their stability 



• Experimental verification carried out on coupled nonlinear circuits 
   (Reddy, Sen, Johnston, PRL, 85 (2000) 3381) 



•  Death state confirmed 
•  In-phase and out-of-phase oscillations 
   seen 



•  Existence of death islands and their multiple connectedness.  



•  IN-PHASE AND ANTI-PHASE LOCKED STATES 



Time delay effects in a living coupled oscillator system 
(Takamatsu et al, PRL 85 (2000) 2026) 

Experiments with plasmodium of slime mold 

•  contraction/relaxation states 
•  time delay and coupling 
 controlled by size of tube 
•  observed in-phase/anti-phase 
  oscillations 



Observed amplitude death 
in a coupled system of an 
electronic oscillator and 
a biological oscillator 



Non-local time delayed coupling 
Ignore amplitude variations 

Do Chimera states exist in a time delayed system? 



Sethia, Sen & Atay,  PRL (2008) 



Chimera states 

No delay With delay 





Irregular clusters of synchronized phase oscillations in BZ reactions 

Vladimir K. Vanag, Lingfa Yang, Milos Dolnik, Anatol M. Zhabotinsky 
& Irving R. Epstein, Nature 406 (2000) 389 



• strong synchronization 
of neuronal clusters 
may cause different 
disease symptoms 
like peripheral tremor 
(Morbus Parkinson) or 
epileptic seizures 
Treatment: 
• strong permanent pulsetrain 
  stimulation signal 
• suppress or over-activate 
neuronal activity 
• may cause severe side 
effects 

Deep Brain Stimulation 



Stimulation with nonlinear delayed feedback 

Basic Idea: 
Desynchronize using a 
feedback signal 

Stimulation signal 

Time delay helps in reducing the threshold for desynchronization 



Model calculation using coupled limit cycle oscillator model 



Effective desynchronization of coupled limit cycle oscillators 



Desynchronization mechanism 



Concluding remarks: 

•  Coupled oscillator systems possess a rich variety of collective 
   states which depend upon the coupling strength, nature of the 
   coupling etc. 

•  Time delay in the coupling can have profound effects on the 
   collective dynamics e.g. higher frequency states, amplitude 
   death for identical oscillators, forbidden states etc 

•  Time delay can also enhance synchronization, facilitate 
   desynchronization, induce bi-stability, influence chaos etc. 

•  Useful paradigm for simulating and modeling many physical, 
   chemical and biological systems 



•  Collective dynamics of time delay coupled oscillator systems 
   is an active and fertile area of research in applied mathematics, 
   physics, biology, neuroscience. 

•  Vast potential for applications – communication, chaos control, 
   simulation of turbulence in fluids, population dynamics ….. 
   ….. list keeps growing 

•  Enormous opportunities for experimental studies as well e.g. 
  nonlinear circuits, artificial neural nets, live studies of neurons. 
  coupled lasers etc. 
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